Exoskeleton Robot Suits That Exist NOW

There are an increasing amount of applications for an exoskeleton, such as decreased fatigue and increased productivity whilst unloading supplies or enabling a soldier to carry heavy objects (80–300 kg) while running or climbing stairs. Not only could a soldier potentially carry more weight, they could presumably wield heavier armor and weapons while lowering their metabolic rate or maintaining the same rate with more carry capacity. Some models use a hydraulic system controlled by an on-board computer. They could be powered by an internal combustion engine, batteries or potentially fuel cells

Watch here: 5 Exoskeleton Robot Suit That Exist NOWbionic 2

One of the main applications would be medical — improving the quality of life of persons who have, for example, lost the use of their legs, by providing assistive technology to enable system-assisted walking or restoration of other motor controls lost due to illness or accidental injury.

Another area of application could be medical care, nursing in particular. Faced with the impending shortage of medical professionals and the increasing number of people in elderly care, several teams of Japanese engineers have developed exoskeletons designed to help nurses lift and carry patients.

Exoskeletons can also be applied in the area of rehabilitation of stroke or spinal cord injury patients. Such exoskeletons are sometimes also called Step Rehabilitation Robots. An exoskeleton could reduce the number of therapists needed by allowing even the most impaired patient to be trained by one therapist, whereas several are currently needed. Also training would be more uniform, easier to analyze retrospectively and can be specifically customized for each patient. At this time there are several projects designing training aids for rehabilitation centers (LOPES exoskeleton, Lokomat, Modular robotic exoskeleton UniExo, CAPIO and the gait trainer, HAL 5.)[8][9]

German Research Centre for Artificial Intelligence developed two general purpose powered exoskeletons CAPIO and VI-Bot.[9][10] They also considered human force sensitivities in the design and operation phases.[11]Teleoperation and power amplification were said to be the first applications, but after recent technological advances the range of application fields is said to have widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control (Wearable Robots: Biomechatronic Exoskeletons).[12]

In civilian areas, exoskeletons could be used to help firefighters and other rescue workers survive dangerous environments…

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s